On chaotic $C_0$-semigroups and infinitely regular hypercyclic vectors
نویسندگان
چکیده
منابع مشابه
Small sets and hypercyclic vectors
We study the “smallness” of the set of non-hypercyclic vectors for some classical hypercyclic operators.
متن کاملExistence and Nonexistence of Hypercyclic Semigroups
In these notes we provide a new proof of the existence of a hypercyclic uniformly continuous semigroup of operators on any separable infinitedimensional Banach space that is very different from—and considerably shorter than—the one recently given by Bermúdez, Bonilla and Martinón. We also show the existence of a strongly dense family of topologically mixing operators on every separable infinite...
متن کاملTensor products of recurrent hypercyclic semigroups
We study tensor products of strongly continuous semigroups on Banach spaces that satisfy the hypercyclicity criterion, the recurrent hypercyclicity criterion or are chaotic.
متن کاملCongruences on Regular Semigroups
Let S be a regular semigroup and let p be a congruence relation on S. The kernel of p, in notation kerp, is the union of the idempotent p-classes. The trace of p, in notation trp, is the restriction of p to the set of idempotents of S. The pair (kerp,trp) is said to be the congruence pair associated with p. Congruence pairs can be characterized abstractly, and it turns out that a congruence is ...
متن کاملFlows on Regular Semigroups
We study the structure of the flow monoid of a regular semigroup. This arises from the approach of Nambooripad of considering a regular semigroup as a groupoid – a category in which every morphism is invertible. A flow is then a section to the source map in this groupoid, and the monoid structure of the set of all flows is determined in terms of the Green relations on the original semigroup.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the American Mathematical Society
سال: 2006
ISSN: 0002-9939,1088-6826
DOI: 10.1090/s0002-9939-06-08391-2